Çarpanlara Ayırma
:: Eğitim & Öğretim :: Dersler
1 sayfadaki 1 sayfası
Çarpanlara Ayırma
- Kod:
1-)ORTAK ÇARPAN PARANTEZİNE ALMA
A(X).B(X)+A(X).C(X)=A(X).[B(X)+C(X)
Ortak çarpan parantezine almaktaki amaç terim sayısını bire düşürmektir.Böylece ifadelerde sadeleştirme kolaylıkla yapılabilir.
ÖRNEKLER:
1-)ax+bx-cx ifadesini çarpanlara ayıralım!
ax+bx-cx üç terimlisinde ortak çarpan x’tir.buna göre;
ax+bx-cx=x.(a+b-c) olur.
2-)a b c+a b c+a bc ifadesini çarpanlarına ayıralım!
İfade üç terimlidir ve abc ortak çarpandır.O halde;
a b c+ab c+a bc=abc(ab+bc+a c)dir.
2-)GRUPLANDIRARAK ÇARPANLARA AYIRMA
Verilen ifadenin terimleri uygun şekillerde guplara ayrılır ve her grupta ortak bi çarpan bulunmaya çalışılır.
ÖRNEKLER:
1-)ax+bx+ay+by=(ax+bx)+(ay+by)
=x(a+b)+y(a+b)
=(a+b).(x+y)
2-)x-ax+2x-2a=(x-ax)+(2x-2a)
=x(x-a)+2(x-a)
=(x-1).(a-1)
3-)ax-a-x+1=(ax-a)+(-x+1)
=a(x-1)-1(x-1)
=(x-1).(a-1)
3-)İKİ KARE FARKI OLAN İFADELERİN ÇARPANLARA AYRILMASI
a-b=(a-b).(a+b)
ÖRNEKLER:
1-)4x - 9=(2x-3)(2x+3)
2x - 3
2-)(2a-3) - (a-2)=
=(2a-3) – (a-2)
=[(2a-3)-(a-2)].[(2a-3)+(a-2)]
=(2a-3-a+2).(2a-3+a-2)
=(a-1).(3a-5)
3-)(2x-3)-1=
= (2x-3)-1
=[(2x-3)-1].[(2x-3)+1]
=(2x-3-1).(2x-3+1)
=(2x-4).(2x-2)
=4(x-2).(x-1)
4-)(298-98)-200.392 =16 (1994/ÖSS)
2a
= (298-98)(298+98)-200.392 =16
2a
= 200.396-200.392 =16
2a
=200(396-392) =16
2a
=100.4 =16 a=100.4 a=25
a 16a - b İFADESİNİ ÇARPANLARA AYIRMA
a-b=(a-b) (a + a b+a .b +…..+b )
ÖRNEKLER:
x –y ifadesini çarpanlarına ayırınız
1-) x - y = (x-y) (x +x y+x y+xy +y )olur.
2-) x – y ifadesini çarpanlarına ayırınız.
x – y =(x – y)(x +x y+x y +x y + xy +y ) olur.Ncak ikinci çarpan tekrar çarpanlara ayrılır.Bu soruyu aşağıdaki gibi çözersek daha kolay olur.
x – y = (x ) – (y )
= (x -y )(x +y )
=(x-y)(x +xy+y )(x+y)(x –xy +y )
a + b İFADESİNİ ÇARPANLARINA AYIRMA
a- ) n tek ise a + b=(a+b)(a - a .b+a .b -….+b )’dir
ÖRNEKLER
1-) a – b ifadesini çarpanlarına ayıralım.
a + b=(a+b)(a – a b +a b –ab + b )
b- )n çift ve n=2 (k Z)
p tek ve tam sayı olmak üzere n=p.t ise
a + b=(a ) +(b ) biçiminde yazarak ayrılır ç4-)TAM KARE OLAN İFADELERİN ÇARPANLARA AYRILMASI
(a+b)=a+2ab+b
(a-b)=a-2ab+b
Tam kare üç terimli ifadelerde,iki terimin kare kökleri çarpımının iki katı,üçüncü(ortadaki) terimi vermektedir.
ÖRNEKLER:
1-)x+4x+4 ifadesi tam kare midir?
x + 4x +4=(x+2)
x 2
2.x.2=4x (ortadaki terim) o halde x+4x+4 tam karedir
2-)2000-4000.1999+1999 işleminin sonucu kaçtır?
2000 1999
2.2000.1999=4000.1999 olduğuna göre
2000-4000.1999+1999=(2000-1999)
=1 olur.
5-)ÜÇ TERİMLİYİ ÇARPANLARA AYIRMA
x+bx+c şeklindeki bir üç terimli çarpanlarına ayrılırken, çarpımları c(sabit terim),toplamları b(x in katsayısı) olan iki sayı aranır.
ÖRNEKLER:
1-)x+y+4x-6y+19 ifadesinin en küçük değeri nedir?
x+y+4x-6y+19
=(x+4x+4)+(y-6y+9)+6
=(x+2)+(y-3)+6 (x+2) en az 0 (y-3) en az 0 olacağına göre (x+2)+(y-3)+6 nın en küçük değeri 6 olur.arpanlarına ayrılır.
:: Eğitim & Öğretim :: Dersler
1 sayfadaki 1 sayfası
Bu forumun müsaadesi var:
Bu forumdaki mesajlara cevap veremezsiniz